You are here: Home / Resources / Links / Model portal / R-SWMS

R-SWMS

Year of publication:
Tags:
functional-structural-plant-modelxylem-flow3Drhizosphereplant-soilmacro-poresite
R-SWMS

R-SWMS

Mathieu Javaux, Agrosphere, Forschungszentrum Jülich GmbH

Website

https://sites.uclouvain.be/RSWMS/

 

Description

R-SWMS (Javaux et al., 2008) is a numerical model for simulating solute transport and water flow within the soil - plant system. Based on flow and transport equations in the 3D soil matrix and within the 3D root xylem network, it simulates the uptake of solute and water by plant roots for a growing root system. Three-dimensional root growth is a function of environmental conditions (soil resistance, nutrient concentration, temperature) and plant parameters (gravitropism, sensitivity to soil resistance, etc.). The program is based on a model of Clausnitzer and Hopmans (1994), and thus contains similar water flow and solute transport routines as SWMS 3D (1995). Since then, it has been modified and developed further through contributions of several PhD and master theses.

List of current and past contributors: Tom Schroeder, Valentin Couvreur, Natalie Schroeder, Katrin Huber, Jan Vanderborght, Mathieu Javaux, Betiglu Abesha, David Garre.

 

Screen shots

 

Scientific articles

Javaux, M., V. Couvreur, J. Vanderborght, and H. Vereecken (2013), Root Water Uptake: From Three-Dimensional Biophysical Processes to Macroscopic Modeling Approaches, Vadose Zone J., 12(4).

Schröder, N., N. Lazarovitch, J. Vanderborght, H. Vereecken, and M. Javaux (2013), Linking transpiration reduction to rhizosphere salinity using a 3D coupled soil-plant model, Plant Soil, 1-17.

Stingaciu, L., H. Schulz, A. Pohlmeier, S. Behnke, H. Zilken, M. Javaux and H. Vereecken, 2013. In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Water Uptake Modeling. Vadose Zone J.12(1). doi:10.2136/vzj2012.0019

de Willigen P., J. C. van Dam, M. Javaux, and M. Heinen. 2012. Root water uptake as simulated by three soil water flow models. Vadose Zone J. 11(3). doi:10.2136/vzj2012.0018.

Schroeder, N., M. Javaux, J. Vanderborght, B. Steffen and H. Vereecken, 2012. Effect of root water and solute uptake on apparent soil dispersivity: a simulation study. Vadose Zone J. 11(3). doi:10.2136/vzj2012.0009

Couvreur V., J. Vanderborght, and M. Javaux. 2012. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrology and Earth System Sciences. 16: 2957-2971. doi:10.5194/hess-16-2957-2012.

Janott, M., S. Gayler, A. Gessler, M. Javaux,C. Klier, and E Priesack. 2011. A one-dimensional model of water flow in soil-plant systems based on plant architecture. Plant and Soil 341:233–256. doi 10.1007/s11104-010-0639-0.

Draye, X., Y. Kim, G. Lobet, and M. Javaux. 2010. Model-assisted integration of physiological and environmental constraints affecting the dynamic and spatial patterns of root water uptake from soils. Journal of Experimental Botany, 61(8):2145-2155. doi:10.1093/jxb/erq077.

Schröder, T., L. Tang, M. Javaux, J. Vanderborght, B. Korfgen, and H. Vereecken. 2009. A grid refinement approach for a 3D soil-root water transfer model. Water Resour. Res. 45, W10412,doi:10.1029/2009WR007873.

Schroeder, T., M. Javaux, J. Vanderborght, B. Koerfgen and H. Vereecken. 2009. Implementation of a microscopic soil-root hydraulic conductivity drop function in a soil-root architecture water transfer model. Vadose Zone Journal 8(3):783-792. doi: 10.2136/vzj2008.0116.

Javaux, M., T. Schroeder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modelling approach for predicting root water uptake. Vadose Zone Journal 7:1079–1088. doi:10.2136/vzj2007.0115.

Schroeder, T., M. Javaux, J. Vanderborght, B. Koerfgen and H. Vereecken. 2008. Effect of local soil hydraulic conductivity drop using a three-dimensional root water uptake model. Vadose Zone Journal 7:1089–1098. doi:10.2136/vzj2007.0114

Book chapters

Lobet, G., Ch. Hachez, M. Javaux, and X. Draye. 2013. Root water uptake and water flow in the soil-root domain. In: Eshel, A. and Beeckman, T.eds, Plant Roots: The Hidden Half (Fourth Edition) CRC Press Inc.

Javaux M., X. Draye, Cl. Doussan, J. Vanderborght, and H. Vereecken. 2011. Root water uptake: towards 3-D functional approaches. In Encyclopaedia of Agrophysics. J. Glinski, J. Horabik, J. Lipiec (Eds.). Springer, The Netherlands. p.717-721.

 

Technical information

Operating system: Linux

Programming Language: Fortran 77-2003

Licence: freeware

Output: root system architecture, soil water content, soil and root water pressure head distributions, soil and plant solute concentrations

Export formats: Text files, vtk files

This is Pacific Theme